Chemical composition and their breakdown in soil

Magnesium Chloride	MgCl ₂	Dissociates into Mg ²⁺ and 2Cl ⁻ ions quickly; highly soluble.	
Magnesium Sulfate	MgSO ₄	Dissociates into ${\rm Mg}^{2+}$ and ${\rm SO_4}^{2-}$ ions; also highly soluble.	
Ammonium Polyphosphate APP		(NH_4PO_3) n Hydrolyzes over time into ammonium (NH_4^+) and orthophosphate $(H_2PO_4^-, HPO_4^{\ 2^-})$; breakdown rate depends on microbial activity and pH.	

Primary purpose in soil use

MgCl ₂	Magnesium + Chloride	De-icing agent (not a typical fertilizer); sometimes for Mg supplementation in Mg-deficient soils.	
MgSO ₄	Magnesium + Sulfate	Common Mg fertilizer (e.g. "Epsom salt"); sulfate helps with sulfur-deficient soils.	
APP	Nitrogen + Phosphorus	Phosphorus-rich fertilizer; starter fertilizer or in fertigation systems.	

Biosafety and environmental impact

MgCl ₂	Not ideal long-term; chloride ion is mobile and contributes to salinization. Potential toxicity to plants at high doses.
MgSO ₄	Generally safe; sulfur is essential for amino acid synthesis and not usually harmful. Minimal environmental risk.
APP	Moderate risk if overapplied (eutrophication of water bodies). Safe if applied correctly. Breaks down biologically over time.

Comparison on environmental benefits and risks

Comp.	Pros	Cons	
MgCl ₂	Supplies Mg quickly	Chloride can accumulate and become toxic to plants	
	High solubility; immediate availability.	Can increase soil salinity, osmotic stress and ion toxicity.	
MgSO₄	Dual nutrient source (Mg and S)	Less persistent in sandy soils due to leaching	
	Neutral pH; safe for most soils.	May not be sufficient alone as a full fertilizer.	
АРР	High P availability	Can cause P fixation in alkaline soils	
	Good for early plant growth	Overuse may lead to eutrophication	
	Controlled-release potential depending on chain length.	Relies on microbial activity to release nutrients.	

Summary of comparison

Property / Use	MgCl ₂	MgSO₄	APP
Key nutrients	Mg, Cl	Mg, S	N, P
Soil pH impact	Acidifying (Cl ⁻ effect)	Neutral	Slightly acidifying
Solubility	Very high	High	Moderate (depends on polymer length)
Fertilizer use	Rare	Common (Epsom salt)	Very common (starter fertilizer)
Toxicity/salinity risk	High (due to Cl ⁻)	Low	Moderate (P runoff risk)
Bioremediation potential	Low	Medium	High (microbial stimulation)